Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites
نویسندگان
چکیده
Resistivity, Seebeck coefficient, and Hall measurements were performed on densified nanocrystalline composite materials of undoped and Ag-doped PbTe nanocrystals to investigate the physical mechanisms responsible for Seebeck coefficient enhancement in nanocrystalline systems. The unique temperature dependence of the resistivity and mobility for these PbTe nanocomposites suggests that grain-boundary potential barrier scattering is the dominant scattering mechanism. We propose that carrier trapping in the grain boundaries forms energy barriers that impede the conduction of carriers between grains, essentially filtering charge carriers with energy less than the barrier height. These nanocomposites therefore demonstrate an enhanced Seebeck coefficient as compared to single crystal or polycrystalline PbTe at similar carrier concentrations.
منابع مشابه
Model of transport properties of thermoelectric nanocomposite materials
We present a model describing the carrier conductivity and Seebeck coefficient of thermoelectric nanocomposite materials consisting of granular regions. The model is successfully applied to explain relevant experimental data for PbTe nanocomposites. A key factor is the grain potential boundary scattering mechanism. Other mechanisms, such as carrier-acoustic phonon, carrier-nonpolar optical phon...
متن کاملEnhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking.
To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a reduced bipolar thermal conductivity for materials with a relatively low doping level, which could ...
متن کاملThermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface†
The energy-filtering effect was successfully employed at the organic–inorganic semiconductor interface of poly(3-hexylthiophene) (P3HT) nanocomposites with the addition of Bi2Te3 nanowires, where lowenergy carriers were strongly scattered by the appropriately engineered potential barrier of the P3HT– Bi2Te3 interface. The resulting P3HT–Bi2Te3 nanocomposites exhibited a high power factor of 13....
متن کاملChemical composition tuning in quaternary p-type Pb-chalcogenides--a promising strategy for enhanced thermoelectric performance.
Recently a significant improvement in the thermoelectric performance of p-type ternary PbTe-PbSe and PbTe-PbS systems has been realized through alternating the electronic band structure and introducing nano-scale precipitates to bulk materials respectively. However, the quaternary system of PbTe-PbSe-PbS has received less attention. In the current work, we have excluded phase complexity by fabr...
متن کاملLow-Dimensional Thermoelectricity
Thermoelectric materials are used as solid-state heat pumps and as power generators. The low efficiency of devices based on conventional bulk thermoelectric materials confines their applications to niches in which their advantages in compactness and controllability outweigh that drawback. Recent developments in nanotechnologies have led to the development of thermoelectric nano-materials with d...
متن کامل